Chem. Ber. 105, 1736-1748 (1972)

Peter Christophliemk, V. V. Krishna Rao*), Ioannis Tossidis **) und Achim Müller

Übergangsmetallchalkogenverbindungen

Darstellung, Elektronen- und Schwingungsspektren von Diphenylselenothiophosphinato-Komplexen

Aus dem Institut für Chemie der Universität Dortmund

(Eingegangen am 26. Januar 1972)

Darstellung und Eigenschaften der Chelatkomplexe des Diphenylselenothiophosphinat-Ions $(C_6H_5)_2P(Se)S^-$ (= dpstpi) – Co(dpstpi)₂ (2), Ni(dpstpi)₂ (3), Zn(dpstpi)₂ (4), Cd(dpstpi)₂ (5), Pb(dpstpi)₂ (6), Sb(dpstpi)₃ (7) und Cr(dpstpi)₃ (8) – werden beschrieben. Die ligandenfeldtheoretische Ausdeutung der Elektronenspektren von 2, 3 und 8 ergibt, daß dpstpi in die spektrochemische und nephelauxetische Reihe zwischen $(C_6H_5)_2PS_2^-$ und $(C_6H_5)_2PS_2^-$ einzuordnen ist. Die Valenzschwingungen der viergliedrigen Chelatringe MS(Se)P werden zugeordnet und mit denen der Ringsysteme MS₂P und MSe₂P verglichen. Die stark gekoppelten PS- und PSe-Valenzschwingungen der Komplexe 2-8 liegen zwischen 576 und 548/cm bzw. zwischen 525 und 510/cm.

Transition Metal Chalcogen Compounds

Preparation, Electronic and Vibrational Spectra of Diphenylselenothiophosphinato Complexes

The preparation and properties of the chelate complexes of the diphenylselenothiophosphinate ion $(C_6H_5)_2P(Se)S^-$ (= dpstpi) – Co(dpstpi)₂ (2), Ni(dpstpi)₂ (3), Zn(dpstpi)₂ (4), Cd(dpstpi)₂ (5), Pb(dpstpi)₂ (6), Sb(dpstpi)₃ (7) und Cr(dpstpi)₃ (8) – are reported. On the basis of the electronic absorption spectra of 2, 3, and 8, the diphenylselenothiophosphinate ion can be placed in the spectrochemical and nephelauxetic series between $(C_6H_5)_2PS_2^-$ and $(C_6H_5)_2PS_2^-$. The stretching vibrations of the fourmembered chelate ring MS(Se)P are assigned and compared with MS₂P and MSe₂P ring systems. The strongly coupled PS- and PSe-stretching vibrations of the complexes 2-8 are found between 576-548/cm and 525-510/cm respectively.

1. Einleitung

Im Rahmen unserer Untersuchungen an Übergangsmetallchalkogenverbindungen des Typs $M[(C_6H_5)_2XY_2]_n$ (M = Metall; X = P, As; Y = S, Se) haben wir bereits über Dithio- und Diselenophosphinato-Komplexe berichtet ^{1-3 a)}.

2) A. Müller, V. V. K. Rao und G. Klinksiek, Chem. Ber. 104, 1892 (1971).

^{*)} Stipendiat der Alexander von Humboldt-Stiftung aus Indien.

^{**)} Stipendiat der NATO-Scientific Affairs Division aus Griechenland (Univ. Thessaloniki).

¹⁾ A. Müller, V. V. K. Rao und E. Diemann, Chem. Ber. 104, 461 (1971).

³⁾ A. Müller, P. Christophliemk und V. V. K. Rao, Chem. Ber. 104, 1905 (1971).

³a) A. Müller und P. Werle, Chem. Ber. 104, 3782 (1971).

Die Liganden (C_6H_5)₂PS₂⁻ (= dptpi) und (C_6H_5)₂PSe₂⁻ (= dpspi) wurden in die spektrochemische Reihe zwischen Cl und dtp eingeordnet. Der nephelauxetische Effekt war in beiden Fällen außerordentlich groß.

Liganden mit sowohl Schwefel als auch Selen als Donoren am gleichen Ligandenatom sind nur in geringer Zahl bekannt⁴⁻⁸⁾ und spektroskopisch kaum untersucht. Es liegen bisher nur wenig Angaben darüber vor, wie sich die Ligandenfeldstärke dieser "gemischten" Komplexe aus denen der "reinen" ergibt. Aus diesem Grund erschien es uns von Bedeutung, auch Diphenylselenothiophosphinato-Komplexe darzustellen und deren Elektronenspektren kristallfeldtheoretisch zu interpretieren. Weiterhin ist von Interesse, in welchem Maße einander die MS- und MSe-Valenzschwingungen einerseits und die PS- und PSe-Valenzschwingungen andererseits in dem viergliedrigen Ringsystem der Form A beeinflussen. Daher wurden auch die IR-Spektren der Selenothiophosphinato-Komplexe 2-8 im gesamten zugänglichen Bereich gemessen und mit denen anderer Phosphinato-Komplexe verglichen.

$$M \leq_{S}^{Se} P$$
 A

2. Darstellung und Eigenschaften

Die Diphenylselenothiophosphinato-Komplexe 2–8 wurden durch Umsetzung der entsprechenden Metallchloride mit $(C_6H_5)_2P(Se)SNa$ (1) in Äthanol gemäß (1) dargestellt:

Das Natriumsalz 1 erhält man analog zur Synthese von Natriumdiphenyldiselenophosphinat³⁾ und Natriumdiäthylselenothiophosphinat⁸⁾ durch Oxydation von Diphenylchlorphosphin mit rotem Selen zu Diphenylselenophosphinsäurechlorid und anschließende Umsetzung mit Natriumhydrogensulfid gemäß (2) und (3):

$$(C_6H_5)_2PCl + Se \xrightarrow{Benzol} (C_6H_5)_2P(Se)Cl$$
 (2)

$$(C_6H_5)_2P(Se)C1 + NaSH \xrightarrow{0^\circ} [(C_6H_5)_2P(Se)S]Na$$
(3)

Farbe, magnetische Momente und Löslichkeit der Diphenylselenothiophosphinato-Komplexe 2-8 sind aus Tab. 1 zu entnehmen. Bis auf 5 und 6 sind die Komplexe in aromatischen und chlorierten aliphatischen Lösungsmitteln unter Farberhaltung gut bis mäßig löslich. Die Festkörper sind unter Stickstoff nahezu unbegrenzt haltbar,

⁴⁾ C. G. Pierpont, B. J. Corden und R. Eisenberg, Chem. Commun. 1969, 401.

⁵⁾ W. Kuchen und H. Hertel, Angew. Chem. **81**, 127 (1969); Angew. chem. internat. Edit. **8**, 89 (1969).

⁶⁾ H. Hertel und W. Kuchen, Chem. Ber. 104, 1735 (1971).

⁷⁾ H. Hertel und W. Kuchen, Chem. Ber. 104, 1740 (1971).

⁸⁾ W. Kuchen und B. Knop, Angew. Chem. 76, 496 (1964); Angew. Chem. internat. Edit. 3, 507 (1964).

die Lösungen zersetzen sich unterschiedlich rasch, vor allem bei Einwirkung von Licht oder Wärme. Die Molekulargewichte lassen sich daher nur mit großer Fehlerbreite messen, sie zeigen jedoch eindeutig, daß nahezu alle Komplexe bei den (in Chloroform) erreichbaren Konzentrationen monomer vorliegen. Nur Zn(dpstpi)₂ (4) ist deutlich assoziiert und gleicht damit Zn(dpspi)₂³⁾, das unter gleichen Bedingungen dimer vorliegt. 5 und 6 sind polymer (unlöslich).

Verbindung	Farbe	Magnetismus ^{a)}	Löslichkeit in Chloroform und Benzol (Farberhaltung)		
Co(dpstpi) ₂ (2)	grün	$\mu_{\rm eff} = 4.5$ B. M.	lösl. unter rascher Zers.		
Ni(dpstpi) ₂ (3)	oliv-grün	diamagnet.	lösl.		
Zn(dpstpi) ₂ (4)	farblos	diamagnet.	lösl.		
Cd(dpstpi) ₂ (5)	farblos	diamagnet.	nicht merklich lösl.		
Pb(dpstpi) ₂ (6)	hellgelb	diamagnet.	nicht merklich lösl.		
Sb(dpstpi) ₃ (7)	gelb	diamagnet.	lösl.		
Cr(dpstpi) ₃ (8)	oliv-grün	$\mu_{eff} = 3.78$ B. M.	lösl.		

Tab. 1. Eigenschaften von Diphenylselenothiophosphinato-Komplexen

a) Die magnetischen Momente wurden mit einer selbstgebauten Gouyschen Waage unter Berücksichtigung der diamagnetischen Anteile des Liganden bei Raumtemperatur bestimmt. Als Standard diente Hg[Co(SCN)4].

3. Elektronenspektren und magnetische Messungen

Die Elektronenspektren ⁹⁾ von 2, 3 und 8 gehen aus Tab. 2 und 3 sowie den Abbildd. 1-3 hervor, die magnetischen Momente können Tab. 1 entnommen werden. Sowohl Lösungsspektren (im Falle von 2, 3, 4, 7 und 8) als auch Festkörperspektren (im Falle von 5 und 6) weisen eine als ligandeninterne Bande zuzuordnende Absorption bei etwa 37000/cm ($\varepsilon \sim 2 \cdot 10^3 l/Mol \cdot cm$) auf.

Elektronenspektrum von Co(dpstpi)₂ (2)

Sowohl das Elektronenspektrum als auch der beobachtete Paramagnetismus ($\mu_{eff} = 4.5$ B. M.) von 2 lassen auf pseudo-tetraedrische Anordnung des CoSe₂S₂-Chromophors entsprechend der Symmetrie der CoSe₄- und CoS₄-Chromophoren in Co(dpspi)₂ und Co(dptpi)₂³) schließen ^{10, 11}. Diese Gleichheit im spektrochemischen und magnetischen Verhalten (entsprechend im Falle der Ni^{II}- und Cr^{III}-Phosphinato-Komplexe, s.u.) trotz Herabsetzung der Symmetrie des Chromophors von T_d nach C_{2v} ist dadurch erklärbar, daß die optische Elektronegativität χ_{opt} von dpstpi weitgehend der von dptpi ($\chi_{opt} = 2.6$)²) und dpspi¹²) entspricht; wie bisher vorliegende

⁹⁾ Die Elektronenspektren wurden mit einem Spektrometer Beckman-DK 2 aufgenommen. Als Lösungsmittel wurde Chloroform benutzt; die Festkörperspektren wurden an KBr-Preßlingen gemessen.

¹⁰⁾ C. K. Jørgensen, Inorg. Chim. Acta Rev. 2, 65 (1968).

¹¹⁾ A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam-London-New York 1968.

¹²⁾ Xopt von dpspi konnte aus den bisher vorliegenden spektroskopischen Daten noch nicht exakt bestimmt werden.

Rechnungen¹³⁻¹⁸⁾ zeigen, verringert sich χ_{opt} bei Ersatz von Schwefel (als Donor) durch Selen in sowohl ein- als auch zweizähnigen Liganden nur etwa um 0.1 (dsc: 2.6; dtc: 2.7; dsp: 2.6; dtp: 2.7; su: 2.6; tu: 2.7)¹⁹⁾.

In Hinblick auf die Analogie der Elektronenspektren der Co^{II}-Diphenylphosphinato-Komplexe kann die längstwellige beobachtete Bande im Spektrum von 2 bei 7800/cm ebenfalls als v₂ (${}^{4}A_{2} \rightarrow {}^{4}T_{1}(F)$) und der Übergang bei 14700/cm (einschließlich der Schulter bei 15700/cm) als v₃ (${}^{4}A_{2} \rightarrow {}^{4}T_{1}(P)$) zugeordnet werden.

Tab. 2. Absorptionsmaxima in den Elektronenspektren von 2 und 3; Bandenlagen v in cm⁻¹ (in Klammern Extinktionskoeffizient ε in $l/Mol \cdot cm$), Ligandenfeldparameter Λ , Racah-Parameter B' und nephelauxetischer Parameter $\beta = B'(Komplex)/B(Ion)$, Sch = Schulter

Verbindung Lösungsmittel	$Co[(C_6H_5)_2P(Se)S]_2$ (2) Chloroform	$Ni[(C_6H_5)_2P(Se)S]_2$ (3) Benzol
Bandenlagen und Zuordnung ^{a)}	$\begin{array}{cccc} ? & \nu_1 & ({}^{4}A_2 {\rightarrow} {}^{4}T_2) \\ 7800 & (10^2) & \nu_2 & ({}^{4}A_2 {\rightarrow} {}^{4}T_1 & (\\ 14700 & (250) \\ 15700 & Sch \\ 19800 & (20) & spin-verboten \\ 24600 & (1100) & Charge Trans \end{array}$	$ \begin{array}{c} 13300(10^2) & \nu_1(^1A_{1g} \rightarrow ^1A_{2g}) \\ F)) & 17700(10^2) & \nu_2(^1A_{1g} \rightarrow ^1B_{1g}) \\ 23100(4\cdot 10^2) & ^1A_{1g} \rightarrow ^1E_g(?) \\ \end{array} \\ \left. \begin{array}{c} \text{ffer} \\ 28100(10^4) \end{array} \right. \\ \begin{array}{c} \text{Charge Transfer} \end{array} $
Parameter	$\Delta = 4650/cm$ B' = 574/cm $\beta = 0.59$	$A_1 = 16100/cm$

a) Zuordnung bei 2 nach Pseudo-Td- und bei 3 nach Pseudo-D4h-Symmetrie.

 v_1 (${}^{4}A_2 \rightarrow {}^{4}T_2$) konnte experimentell nicht ermittelt werden (gemäß der Bedingung $v_1 = \Delta$ sollte die Bande bei 4650/cm liegen). Dieses Verhalten ist jedoch nicht ungewöhnlich, da v_1 in tetraedrischen Co^{II}-Komplexen stets nur geringe Intensität aufweist¹¹) und auch in den beiden von uns untersuchten Co^{II}-Diphenylphosphinato-Komplexen nicht aufgefunden werden konnte³).

Der Ligandenfeldparameter Δ und der *Racah*-Parameter B' wurden mit den in der Literatur^{11, 20)} (vgl. l. c. ³⁾) angegebenen Gleichungen und mit einem Wert von B =967/cm (für das freie Ion) berechnet. Die so erhaltenen Werte aus dem Elektronenspektrum von 2 von $\Delta =$ 4650/cm und B' = 574/cm liegen erwartungsgemäß zwischen denen von Co(dpspi)₂ (mit $\Delta =$ 4600/cm und B' = 536/cm)³⁾ und Co(dptpi)₂ (mit

- ¹⁶⁾ C. K. Jørgensen, Acta chem. scand. 16, 2017 (1962).
- 17) C. K. Jørgensen, Inorganic Complexes, Academic Press, London 1963.
- 18) C. Furlani und T. Tarantelli, Inorg. nuclear Chem. Letters 2, 391 (1966).
- ¹⁹⁾ dsc = $R_2NCSe_2^-$, dtc = $R_2NCS_2^-$, dsp = $(C_2H_5O)_2PSe_2^-$, dtp = $(C_2H_5O)_2PS_2^-$, su = $SeC(NH_2)_2$, tu = $SC(NH_2)_2$, dmtpi = $(CH_3)_2PS_2^-$, despi = $(C_2H_5)_2PSe_2^-$, despi = $(C_2H_5)_2PSe_2^-$, dptpi = $(C_6H_5)_2PS_2^-$.
- ²⁰⁾ F. A. Cotton und M. Goodgame, J. Amer. chem. Soc. 83, 1777 (1961).
- 21) K. Nakamoto und P. J. McCarthy, Spectroscopy and Structure of Metal Chelate Compounds, John Wiley & Sons, New York - London - Sydney 1968.

¹³⁾ C. Furlani, E. Cervone und F. D. Camassei, Inorg. Chem. 7, 265 (1968).

¹⁴⁾ K. A. Jensen und V. Krishnan, Acta chem. scand. 24, 743 (1970).

¹⁵⁾ E. Cervone, F. Camassei, M. L. Luciani und C. Furlani, J. inorg. nuclear Chem. 31, 1101 (1969).

 $\Delta = 4800/\text{cm}$ und $B' = 580/\text{cm}^{3)}$ und lassen sich wie folgt in die spektrochemische Reihe (vgl. l. c.²²⁾) einordnen:

 $Cl < tu < dpspi < dpspi \approx detpi < dsp < dptpi < dtp$

Der nephelauxetische Effekt steigt für die tetraedrischen Co^{II}-Komplexe in der Folge der Werte $1-\beta$

 $Cl < tu < dtp \approx detpi \sim dptpi \sim dpstpi < dpspi$

Abbild. 1. Elektronenspektrum von $Coll[(C_6H_5)_2P(Se)S]_2$ (Co(dpstpi)₂, 2) in Chloroform

Elektronenspektrum von Ni(dpstpi)₂ (3)

Das Elektronenspektrum und der ermittelte Diamagnetismus von 3 lassen sich durch Annahme einer pseudo-quadratisch-planaren Anordnung des NiSe₂S₂-Chromophors erklären, wie sie entsprechend für alle anderen Ni^{II}-Komplexe mit zweizähnigen Liganden (S oder Se als Donoratom) vorgefunden wurde^{10,11,13,17,23-27)}. Das Spektrum von 3 gleicht dem von Ni(dpspi)₂³⁾ und Ni(dptpi)₂²⁷⁾, die Zuordnung der beiden längstwelligen Übergänge kann daher in gleicher Weise als v₁ (${}^{1}A_{1g} \rightarrow {}^{1}A_{2g}$) und v₂ (${}^{1}A_{1g} \rightarrow {}^{1}B_{1g}$) erfolgen.

Die Berechnung des Kristallfeldparameters Δ_1 gemäß der Gl. (4)

$$\mathbf{v}_1 = \mathbf{\Delta}_1 - \mathbf{35} \, F_4 \tag{4}$$

²²⁾ In der unter³⁾ zitierten Arbeit liegt ein Druckfehler vor. Bei der Angabe der spektrochemischen und nephelauxetischen Reihen wurden die Zeichen > und < für ,,größer als" und ,,kleiner als" verwechselt, wie aus den Tabellen schon hervorgeht.

²³⁾ A. Davison und E. T. Shawl, Inorg. Chem. 9, 1820 (1970).

²⁴⁾ J. P. Fackler und D. Coucouvanis, J. Amer. chem. Soc. 88, 3913 (1966).

²⁵⁾ B. G. Werden, E. Billig und H. B. Gray, Inorg. Chem. 5, 78 (1966).

²⁶⁾ H. B. Gray und C. J. Ballhausen, J. Amer. chem. Soc. 85, 260 (1963).

²⁷⁾ A. A. G. Tomlinson und C. Furlani, Inorg. chim. Acta [Padova] 3, 487 (1969).

(wobei für den *Slater-Condon*-Parameter $F_2 = 10 F_4 = 800$ /cm eingesetzt wurde, vgl. l. c. ^{13, 24}) ergibt für 3 einen Wert von $\Delta_1 = 16100$ /cm gegenüber $\Delta_1 = 16800$ /cm bei Ni(dptpi)₂²⁷⁾ und $\Delta_1 = 15800$ /cm bei Ni(dpspi)₂³⁾.

Somit liegt dpstpi sowohl im Falle der tetraedrischen Co^{II}-Komplexe als auch im Falle der quadratisch-planaren Ni^{II}-Komplexe in der spektrochemischen Reihe zwischen dpspi und dptpi.

Abbild. 2. Elektronenspektrum von $Ni^{II}[(C_6H_5)_2P(Se)S]_2$ (Ni(dpstpi)₂ (3)) in Chloroform

Elektronenspektrum von Cr[(C₆H₅)₂P(Se)S]₃ (8)

Das magnetische Moment von 8 ($\mu_{eff} = 3.78$ B. M.) ist nahezu gleich dem spinonly-Wert (3.89 B. M.) für drei ungepaarte Elektronen, wie er für Cr^{III} in oktaedrischer Umgebung zu erwarten ist^{10,11}). Auch das Elektronenspektrum von 8 läßt sich durch Annahme pseudooktaedrischer Punktlage des Cr^{III}Se₃S₃-Chromophors entsprechend bisher untersuchten Cr^{III}-Komplexen mit schwefel- bzw. selenhaltigen Liganden^{5-7, 10-13, 28-32}) interpretieren. Die beiden längstwelligen Banden sind demgemäß

²⁸⁾ J. R. Wasson, S. J. Wasson und G. M. Woltermann, Inorg. Chem. 9, 1576 (1970).

²⁹⁾ C. K. Jørgensen, J. inorg. nuclear Chem. 24, 1571 (1962).

³⁰⁾ V. Caglioti, G. Sartori, C. Furlani, E. Cervone und P. Canellieri, Proceedings 9. ICCC (St. Moritz), S. 121, 1966.

³¹⁾ M. Förster, H. Hertel und W. Kuchen, Angew. Chem. 82, 842 (1970); Angew. chem. internat. Edit. 9, 811 (1970).

³²⁾ Y. Tanabe und S. Sugano, J. physic. Soc. Japan 9, 753 (1954).

den Elektronenübergängen v₁ (${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$) und v₂ (${}^{4}A_{2g} \rightarrow {}^{4}T_{1g}$) zuzuordnen. Die Bandenlagen, Extinktionskoeffizienten, *Racah*- und nephelauxetischen Parameter von **8** und ähnlichen Cr^{III}-Komplexen sind in Tab. 3 aufgeführt. Die drei spinerlaubten Übergänge gemäß dem *Tanabe-Sugano*-Energiediagramm (für d³-Konfiguration und oktaedrische Umgebung)^{21,32}) vom Grundzustand ${}^{4}A_{2g}$ nach ${}^{4}T_{2g}$, ${}^{4}T_{1g}(F)$ und ${}^{4}T_{1g}(P)$ können (auch bei **8**) infolge Auftretens starker Ligandenbanden in den in Frage kommenden Bereichen meist nicht alle aufgefunden bzw. mit Sicherheit zugeordnet werden. Der erste spin-erlaubte Übergang ergibt den Ligandenfeldparameter Δ . Die spin-verbotenen Übergänge nach ${}^{2}E_{g}$ und ${}^{2}T_{2g}$ konnten aufgrund ihrer schwachen Intensität erwartungsgemäß im Spektrum von **8** nicht beobachtet werden. Die *Racah*-Parameter *B'* wurden gemäß Gl. (5) berechnet¹⁰, der nephelauxetische Parameter β_{35} ist durch den Quotienten $\beta_{35} = B'(Komplex)/B(freies Ion)$ gegeben, *B* wurde dabei mit 918/cm^{10, 21} in Rechnung gesetzt.

$$B' = (2\nu_1 - \nu_2)(\nu_2 - \nu_1)/(27\nu_1 - 15\nu_2)$$
(5)

Ordnet man die in Tab. 3 aufgeführten Werte für v_1 der verschiedenen Komplexe, so erhält man für Cr^{III} in oktaedrischer Umgebung die spektrochemische Reihe

despi
$$<$$
 destpi $<$ detpi $<$ dpstpi \sim dsp \approx dmtpi $<$ dptpi $<$ dtp \sim R'dtp,

in welcher die Liganden mit Äthylgruppen die von *Hertel* und *Kuchen*⁶) ermittelte Folge einnehmen (vgl. hierzu Tab. 3). Hierbei steht dpstpi zwischen detpi und dsp, jedoch ganz in der Nähe des letzteren Liganden. Die so aufgestellte spektrochemische Reihe entspricht den bereits für quadratisch-planare Ni^{II}- und tetraedrische Co^{II}-Komplexe ermittelten Reihen^{3, 22}). Sämtliche Phosphinate und Phosphate (mit S und/oder Se als Donoren) stehen weiter links als z.B. dtc (v₁ in Cr(dtc)₃ = 15 500/cm)²⁸). Hiermit wird bestätigt, daß die Ligandenfeldaufspaltung bei Diäthylphosphaten stets wesentlich größer ist als bei Diäthylphosphinaten, bei den schwefelsubstituierten Liganden stärker als bei den selenhaltigen Analoga und daß Diphenylphosphinate in der spektrochemischen Reihe weiter rechts stehen als die entsprechenden Dialkylphosphinate³).

Die verhältnismäßig hohe Intensität von v_1 und v_2 wie im Spektrum von 8 wurde auch im Falle anderer Liganden mit S und/oder Se als Donoren festgestellt^{10,11}) und kann als Folge hoher Kovalenz der Metall-Liganden-Bindung sowie der erniedrigten Symmetrie (bei 8 liegt höchstens noch C_{2v}-Symmetrie vor) betrachtet werden. Der für 8 berechnete *Racah*-Parameter B' = 382/cm bzw. der daraus ermittelte Wert von $\beta_{35} = 0.42$ zeigt ebenfalls eine außerordentlich starke kovalente Metall-Ligand- σ -Bindung, hervorgerufen durch starke Delokalisierung der antibindenden $e_g\sigma$ -Elektronen, an. Nach der gemäß Tab. 3 aufgestellten nephelauxetischen Reihe der Werte für $(1 - \beta_{35})$ ist dpstpi zwischen dsp und despi einzuordnen.

$$\mathrm{Cl} < \mathrm{detpi} < \mathrm{destpi} pprox \mathrm{R'dtp} pprox \mathrm{dtp} < \mathrm{despi} \sim \mathrm{dpstpi} < \mathrm{dsp}$$

Diese Reihe bestätigt die bereits im Falle tetraedrischer Co^{II}-Komplexe³) ermittelten Folgen und schließt die von *Hertel* und *Kuchen* für oktaedrische Cr^{III}- und V^{III}-Komplexe^{6,7}) gefundene Sequenz der Werte für β ein:

Abbild. 3. Elektronenspektrum von $Cr[(C_6H_5)_2P(Se)S]_3$ (Cr(dpstpi)₃ (8)) in Chloroform

Tab. 3. Absorptionsmaxima im Elektronenspektrum von **8** und anderen Komplexen CrL₃ mit $L = R_2 PXY$ ($R = C_2H_5$, C_2H_5O , R'O mit R' = Alkylgruppe, C_6H_5 ; X, Y = S oder Se), Bandenlagen v in cm⁻¹ (in Klammern Extinktionskoeffizienten ϵ in *l*/Mol·cm), *Racah*-Parameter B' in cm⁻¹ und nephelauxetischer Parameter $\beta_{35} = B'(Komplex)/B(Ion)$; Pseudo-O_h-Symmetrie

L ¹⁹⁾ in CrL ₃	$\begin{array}{l} \nu_1 \cdot 10^{-3} = \varDelta \\ {}^{4}A_{2g} \rightarrow {}^{4}T_{2g} \end{array}$	$\nu_2 \cdot 10^{-3}$ $^{4}A_{2g} \rightarrow {}^{4}T_{1g}(F)$	B'35	β ₃₅	Lit.
despi	12.8 (450) 12.9	17.0 (305) 17.0	399 390	0.43 0.42	6) 10)
destpi	13.05 (420) 13.3	17.5 (300) 17.85	426 440	0.46 0.48	6) 10)
detpi	13.45 (330) 13.45	18.1 (230) 18.2	447 460	0.49 0.50	6) 10, vgl. 5, 30)
dpstpi 8	13.6 (260)	17.7 (180)	382	0.42	
dsp	13.7	17.7	370	0.41	10)
dmtpi	13.7		430	0.47	30)
dptpi	13.9				10)
dtp	14.3 (380) 14.39	18.8 (270) 18.85	420 423	0.46 0.46	10, 11, 29, 30)
R'dtp	14.45 (350)	19.075 (255)	418-434	0.45-0.48	28)

4. IR-Spektren

Da die IR-Spektren³³⁾ von 2-8 in Hinblick auf das schwingungsspektroskopische Verhalten des viergliedrigen Chelatringes M(Se)SP untersucht werden sollen – die ligandeninternen Schwingungen sind hier weniger von Interesse –, sind lediglich

³³⁾ Die IR-Spektren wurden zwischen 4000 und 250/cm sowohl an Nujol-Verreibungen als auch an CsJ-Preßlingen mit einem Spektrophotometer Perkin-Elmer 325 gemessen.

zwei aneinandergrenzende Frequenzbereiche von Bedeutung: zwischen 750 und 400/cm liegt der Erwartungsbereich für die PS- und PSe-Valenzschwingungen, unterhalb von 400/cm für die MS- und MSe-Valenzschwingungen³⁴⁾. Die Lage der Hauptabsorptionsbanden im oberen Bereich ist aus Tab. 4 und Tab. 5 zu entnehmen. Die Schwingungen oberhalb von 750/cm treten praktisch unverändert vom Zentralatom in allen Spektren auf und werden daher hier nicht angegeben (vgl. 1. c.³⁾). Ein typisches Gesamtspektrum zeigt Abbild. 4.

Lage der PS- und PSe-Valenzschwingungen

Während in den IR-Spektren der bisher von uns untersuchten Dithio- bzw. Diselenophosphinato-Komplexe¹⁻³⁾ auf Grund der jeweils identischen Brückenatome (S bzw. Se) stets eine längerwellige und schwächere symmetrische sowie eine bei höherer Frequenz liegende und stärkere PS- bzw. PSe-Valenzschwingung auftreten, sollten bei Monoselenomonothiophosphinaten zwei Valenzschwingungen erscheinen, die wegen der sicherlich nicht zu vernachlässigenden Kopplungen^{34a)} nur annähernd als v(PS) und v(PSe) zu bezeichnen sind und daher hier nur v₁ und v₂ genannt werden (entsprechend der üblichen Bezeichnungsweise von v_{as} als v₁ und v_s **al**s v₂). Da zwischen 750 und 400/cm die deutlichste Abhängigkeit vom jeweiligen Zentralatom bei ω_6 und ω_7 auftritt, handelt es sich bei diesen beiden verhältnismäßig intensiven Banden mit hoher Wahrscheinlichkeit um v₁ und v₂, da in diesem Bereich sonst nur ligandeninterne Schwingungen auftreten können. Ein Vergleich mit den aus anderen Arbeiten vorliegenden Zahlenangaben bestätigt die getroffene Zuordnung.

In Diphenyldithiophosphinato-Komplexen treten die antisymmetrischen PS-Valenzschwingungen zwischen 648 und 619/cm auf, die symmetrischen PS-Valenzschwingungen zwischen 578 und 523/cm. Diese Werte wurden mit den bereits in der Literatur vorliegenden Zahlenangaben verglichen und weitgehende Übereinstimmung festgestellt^{2,3}). Die aufgrund wesentlich geringeren Vergleichsmaterials weniger sichere Zuordnung der entsprechenden PSe-Valenzschwingungen aus den Spektren der Diphenyldiselenophosphinato-Komplexe³) ergab einen Bereich von 519 bis 505/cm für v_{as} (PSe) und 469 bis 463/cm für v_s (PSe). Die Frequenzen für v_{as} (PSe) und v_s (PSe) der inzwischen von Krishnan und Zingaro³⁵) dargestellten Diäthyldiselenophosphato-Übergangsmetallkomplexe lassen weitere Vergleiche zu.

Wie Tab. 5 zeigt, liegt v_1 in Diphenyldithio- und Diphenyldiselenophosphinato-Komplexen meist deutlich tiefer als in den entsprechenden Diäthylphosphato-Verbindungen. Für v_2 lassen sich solche generellen Feststellungen nicht treffen. Auch die Differenzen $v_1 - v_2$ in Diäthylphosphato-Komplexen einerseits und analogen Diphenylphosphinaten andererseits weisen zwar vergleichbare Größenordnungen, sonst aber unterschiedliches Verhalten auf. Erstaunlich gering ist — mit in der Regel weniger als 10/cm — jedoch die Abweichung von v_1 und v_2 in 2–8 von dem arithmetischen

³⁴a) Es sei hierbei ausdrücklich darauf hingewiesen, daß v_1 und v_2 mit den nicht charakteristischen pseudo-PC-Valenzschwingungen gekoppelt sind.

³⁴⁾ Die Literaturstellen für die einzelnen Erwartungsbereiche werden weiter unten detailliert angegeben.

³⁵⁾ V. Krishnan und R. A. Zingaro, J. Coord. Chem. 1, 1 (1971).

Mittel \overline{v} der entsprechenden antisymmetrischen und symmetrischen Dithio- und Diselenophosphinato-Komplexe (s. Tab. 5). Formelmäßig wird dieser Zusammenhang durch Gleichung (6) und (7) wiedergegeben:

$$v_{1(MSeSP)} \approx \bar{v}_{1} = \frac{v_{1(MS_{2}P)} + v_{1(MSe_{2}P)}}{2}$$
 (6)
 $v_{2(MSeSP)} \approx \bar{v}_{2} = \frac{v_{2(MS_{2}P)} + v_{2(MSe_{2}P)}}{2}$ (7)

Das hierbei jeweils betrachtete Ringsystem ist als Index (in Klammern) angegeben.

Dieses Verhalten gemäß (6) und (7) weist nicht nur auf die starke Kopplung der PS- und PSe-Valenzschwingungen im Chelatring der Selenothiophosphinate hin, es kann auch als weitere Bestätigung für die getroffene Zuordnung gelten. Die Messung der Raman-Streuungen der Diphenylselenothiophosphinato-Komplexe 2-8 erbrachte leider keine auswertbaren Spektren; das IR-Spektrum des Natrium-Salzes 1 konnte aufgrund dessen Zersetzlichkeit nicht aufgenommen werden.

Abbild. 4. IR-Spektrum von $Zn^{11}[(C_6H_5)_2P(Se)S]_2$ (Zn(dpstpi)₂ (4)) zwischen 4000 und 250/cm

Tab. 4. Hauptabsorptionsbanden ω (cm⁻¹) in den IR-Spektren der Diphenylselenothiophosphinato-Komplexe 2-8 unterhalb von 750/cm

Zuo	ordnung	Co(dpstpi) ₂ N	ນ (dpstpi)2 ພ	Zn(dpstpi)2 🔺	Cd(dpstpi)2	Pb(dpstpi)2 9	Sb(dpstpi)3 4	Cr(dpstpi),3 🛥	Bereich	Intensität der Banden
۷L	₩1 ₩2 ₩3 ₩4 ₩5	742 700 687 627 592	745 703 684 621 593	742 700 687 626 595	740 701 685 621 592	740 703 686 625 590	745 703 686 625 590	744 702 686 620 590	740 — 745 700 — 703 684 — 687 620 — 627 590 — 595	sst sst m sst
v1 a) V2	ധ ₆ ധ7	565 552 521	576 525	563 553 5 2 2	563 548 515	556 512	558 510	568 522	556-576 510-525	m sst
۷L	ა თვ თე	480 330	476 360 330	482 365 335	481 360 338	483 370 330	482 338	483 360	476-483 360-370 330-338	w m

a) Vgl. hierzu 34a).

Tab. 5. Freq	luenzen de	r Phos	phor-Ch	alkog	en-Schwingungen	νιun	$d v_2$	(cm ⁻¹) de	r Chelat-
gruppierung	M(X)YP	(X, Y	= S, S	e) in	Diphenylphosphi	nato-	und	Diäthylpl	hosphato-
	K	Complex	en, v _l u	nd \overline{v}_2	siehe Gleichung ((6) una	d (7)		

Phosphinato- Komplex	x	Y	νι	ν2	_	 זע	ν ₂	v ₁ -v ₂	Lit.
Ni[(C ₆ H ₅) ₂ P(X)Y] ₂	S S Se	S Se Se	622 576 519	574 525 463		571	519	48 51 56	2) 3)
$Zn[(C_6H_5)_2P(X)Y]_2$	S S Se	S Se Se	640 563/553 516	555 522 469		578	512	85 36 47	2) 3)
$Cd[(C_6H_5)_2P(X)Y]_2$	S S Se	S Se Se	639 563 510	562/552 515 468	2	574	513	82 48 42	42) 3)
Pb[(C ₆ H ₅) ₂ P(X)Y] ₂	S S Se	S Se Se	635 550 507	561/55 512 465	5	571	510	76 38 42	42) 42)
Sb[(C ₆ H ₅) ₂ P(X)Y] ₃	S S Se	S Se Se	636/629 558 509	542/52 510 470	3	570	501	100 48 39	2) 42)
C-IC II) DONNI	S	S	640/632	573				63	42)
CI ((C6H5)2F(A) I]3	S	Se	568	522				46	
Ϲ៰Ϳ(Ϲͼℍͼ)ͽϷ(Ϫ)ϒʹϸ	S S	S Se	633/625 567/552	564/552 521	2	572	510	70 39	2)
	Se	Se	517	465				52	3)
Phosphato-Komplex	Se	Se	517 X	465 V1	ν2		V1V2	52	3) Lit.
Phosphato-Komplex Ni[(C2H5O)2PX2]2	Se 	Se	517 X S	465 ν ₁ 644	<u>v</u> ₂ 545		<u>vı və</u> 99	52	3) Lit. 37)
Phosphato-Komplex Ni[(C ₂ H ₅ O) ₂ PX ₂] ₂	Se	Se	517 <u>X</u> S Se	465 ν ₁ 644 530	v ₂ 545 450		99 80	52	3) Lit. 37) 35)
Phosphato-Komplex Ni[$(C_2H_5O)_2PX_2]_2$ Zn[$(C_2H_5O)_2PX_2]_2$	Se	Se	517 X S Se Se Se	465 <u>v1</u> 644 530 630 530	v ₂ 545 450 530 455		99 80 100 75	52	3) Lit. 37) 35) 39) 35)
Phosphato-Komplex Ni[$(C_2H_5O)_2PX_2]_2$ Zn[$(C_2H_5O)_2PX_2]_2$	Se	Se	517 X S Se Se Se Se Se	465 ν1 644 530 630 530 560	v2 545 450 530 455 485		<u>viv</u> 99 80 100 75 75	52	3) Lit. 37) 35) 39) 35) 42)
Phosphato-Komplex Ni[$(C_2H_5O)_2PX_2]_2$ Zn[$(C_2H_5O)_2PX_2]_2$ Cd[$(C_2H_5O)_2PX_2]_2$	Se	Se	517 X S Se Se Se Se S S	465 ν1 644 530 630 530 560 635	v2 545 450 530 455 485 530		<u>vi – v</u> 99 80 100 75 75 105	52	3) Lit. 37) 35) 39) 35) 42) 40)
$\frac{Phosphato-Komplex}{Ni[(C_2H_5O)_2PX_2]_2}$ $Zn[(C_2H_5O)_2PX_2]_2$ $Cd[(C_2H_5O)_2PX_2]_2$	Se	Se	517 X S Se Se Se Se Se Se	465 v1 644 530 630 530 560 635 570	v ₂ 545 450 530 455 485 530 515 500		v1 v2 99 80 100 75 75 105 60	52	3) Lit. 37) 35) 39) 35) 42) 40) 35)
Phosphato-Komplex Ni[$(C_2H_5O)_2PX_2]_2$ Zn[$(C_2H_5O)_2PX_2]_2$ Cd[$(C_2H_5O)_2PX_2]_2$	Se	Se	S Se Se Se Se Se Se Se Se S	465 v1 644 530 630 530 560 635 570 662 654	v2 545 450 530 455 485 530 515 500 571 534		v1 v2 99 80 100 75 75 105 60 110	52	 3) Lit. 37) 35) 39) 35) 42) 40) 35) 37)
Phosphato-Komplex Ni[$(C_2H_5O)_2PX_2]_2$ $Zn[(C_2H_5O)_2PX_2]_2$ $Cd[(C_2H_5O)_2PX_2]_2$ Pb[$(C_2H_5O)_2PX_2]_2$	Se	Se	517 X S Se Se Se Se Se S Se Se Se Se	465 v1 644 530 630 530 560 635 570 662 654 540	v2 545 450 530 455 485 530 515 500 571 534 480		v1 v2 99 80 100 75 75 105 60 110 60	52	 3) Lit. 37) 35) 39) 35) 42) 40) 35) 37) 36)
$\frac{Phosphato-Komplex}{Phosphato-Komplex}$ $Ni[(C_2H_5O)_2PX_2]_2$ $Zn[(C_2H_5O)_2PX_2]_2$ $Cd[(C_2H_5O)_2PX_2]_2$ $Pb[(C_2H_5O)_2PX_2]_2$ $Sb[(C_2H_5O)_2PX_2]_3$	Se	Se	S Se Se Se Se Se Se Se Se Se Se Se Se	465 v1 644 530 630 530 635 570 662 654 540 515	v2 545 450 530 455 485 530 515 500 571 534 480 450		<u>v1-v2</u> 99 80 100 75 75 105 60 110 60 65	52	 3) Lit. 37) 35) 39) 35) 42) 40) 35) 37) 36) 36)
Phosphato-Komplex Ni[$(C_2H_5O)_2PX_2]_2$ Zn[$(C_2H_5O)_2PX_2]_2$ Cd[$(C_2H_5O)_2PX_2]_2$ Pb[$(C_2H_5O)_2PX_2]_2$ Sb[$(C_2H_5O)_2PX_2]_3$ Cr[$(C_2H_5O)_2PX_2]_3$	Se	Se	517 X S Se Se	465 v1 644 530 630 530 660 635 570 662 654 540 515 656	v2 545 450 530 455 485 530 515 500 571 534 480 450 548		v1 v2 99 80 100 75 75 105 60 110 60 65 108	52	 3) Lit. 37) 35) 39) 35) 42) 40) 35) 37) 36) 36) 37)

36) V. Krishnan und R. A. Zingaro, Inorg. Chem. 8, 2337 (1969).

³⁷⁾ D. M. Adams und J. B. Cornell, J. chem. Soc. [London] A 1968, 1299.

38) J. Rockett, Appl. Spectroscopy 16, 39 (1962).

39) D. R. Dakternieks und D. P. Graddon, Austral. J. Chem. 23, 1989 (1970).

40) D. R. Dakternieks und D. P. Graddon, Austral. J. Chem. 23, 2521 (1970).

41) L. C. Thomas und R. A. Chittenden, Chem. and Ind. 1961, 1913.

⁴²⁾ A. Müller, P. Christophliemk, K. H. Schmidt und V. V. K. Rao, J. inorg. nuclear Chem., im Druck.

Kuchen und Hertel⁵) geben als Frequenzbereiche für v_1 und v_2 in Diäthylselenothiophosphinato-Komplexen 560–540 bzw. 454–440/cm an. Während für v_1 diese Werte in etwa mit denen der Diphenylselenothiophosphinate übereinstimmen (548 bis 576/cm, vgl. Tab. 4), liegt gemäß der in Tab. 4 getroffenen Zuordnung v_2 bei wesentlich höheren Frequenzen (525–510/cm). In dem von Kuchen und Hertel angegebenen Bereich sind im Falle von 2–8 keine Banden gefunden worden. Die nächsttieferliegende Schwingung (= ω_8) in Tab. 4 weist eine zu geringe Abhängigkeit vom Zentralatom auf, als daß es sich hierbei um v_2 handeln könnte. Die Differenz $v_1 - v_2$ für destpi-Komplexe ist mit 95–115/cm wesentlich höher als in den analogen Diphenyl-Verbindungen (38–51/cm). Auch die o. a. Autoren geben für die Lage der PSe-Valenzschwingungen Bereiche an, die weit oberhalb der von Thomas und Chittenden⁴¹) gemäß der Regel von Gordy⁴³) berechneten Frequenz für P–Se-Einfachbindungen von 388/cm (vgl. 1. c.⁴⁴) liegen.

Wir danken dem Fonds der Chemischen Industrie sowie der Deutschen Forschungsgemeinschaft für finanzielle Hilfsmittel. V. V. K. R. dankt der Alexander von Humboldt-Stiftung, I. T. der NATO-Scientific Affairs Division für die Gewährung eines Stipendiums.

Beschreibung der Versuche

Analytisches: C und H wurden mikroanalytisch durch Verbrennung in O₂-Atmosphäre bestimmt, P als Ammoniummolybdatophosphat und Se nach Oxydation der Probe mit Bromwasser durch Hydrazinsulfat als Element ausgefällt.

a) Natriumdiphenylselenothiophosphinat (1): Eine benzolische Lösung von 6 g (20 mMol) $(C_6H_5)_2P(Se)Cl^{45})$ wird bei 0° unter Rühren tropfenweise zu 1.5 g (~25 mMol) NaSH gegeben und das Gemisch etwa 30 Min. auf dem Wasserbad erwärmt. Der Niederschlag wird abfiltriert, gründlich mit Benzol gewaschen und 6 Stdn. i. Vak. über P₄O₁₀ getrocknet. Ausb. 45 - 50%, farblose Nadeln.

NaC12H10PSeS (319.2) Ber. P 9.70 Se 24.73 Gef. P 9.6 Se 23.4

Die Substanz ist rasch zersetzlich, so daß bisher keine C,H-Analysen angefertigt werden konnten. In Wasser ist 1 gut löslich, nicht merklich dagegen in organischen Lösungsmitteln (außer Alkoholen und Aceton).

b) Bis(diphenylselenothiophosphinato)-kobalt(II) (2): Zur Lösung von 0.3 g (1.25 mMol) $CoCl_2 \cdot 6H_2O$ in 10 ccm Wasser gibt man unter Rühren tropfenweise eine wäßr. Lösung von etwa 0.7 g 1, wobei sich sofort ein grüner Niederschlag bildet. Dieser wird nach etwa 30 Min. abgesaugt, dann mit Äthanol und Äther gewaschen und 24 Stdn. i. Vak. über P₄O₁₀ getrocknet. Ausb. 60%.

$$CoC_{24}H_{20}P_2Se_2S_2$$
 (651.3) Ber. C 44.26 H 3.10 P 9.51 Gef. C 43.6 H 3.2 P 9.5

Mol.-Gew. ~650 (dampfdruckosmometr. in CHCl₃, 0.005 m)⁴⁶⁾

Die grüne Verbindung ist unter Farberhaltung in Chloroform und Benzol löslich, zersetzt sich in Lösung jedoch rasch.

⁴³⁾ W. Gordy, J. chem. Physics 14, 305 (1946).

⁴⁴⁾ S. Husebye, Acta chem. scand. 19, 774 (1965).

⁴⁵⁾ Die Darstellung von $(C_6H_5)_2P(Se)Cl$ wird in l. c.³⁾ beschrieben.

⁴⁶⁾ Die Mol.-Gewichte wurden mit einem Dampfdruckosmometer der Fa. Knauer bei 45° bestimmt.

c) Bis(diphenylselenothiophosphinato)-nickel(II) (3): Analog b) entsteht mit 0.3 g (1.25 mMol) NiCl₆. $6H_2O$ ein oliv-grüner Niederschlag, 80%.

NiC₂₄H₂₀P₂Se₂S₂ (651.1) Ber. C 44.26 H 3.07 P 9.51 Gef. C 43.8 H 3.0 P 9.8

Mol.-Gew. 664 (dampfdruckosmometr. in CHCl₃, 0.0085 m)

Die oliv-grüne Substanz ist unter Farberhaltung in Benzol und Chloroform löslich.

d) Bis(diphenylselenothiophosphinato)-zink(II) (4): Entsprechend b) erhält man mit 0.2 g (1.15 mMol) $ZnCl_2$ in 75 proz. Ausb. farbloses 4, in Benzol und Chloroform gut löslich.

 $ZnC_{24}H_{20}P_2Se_2S_2$ (657.8) Ber. C 43.82 H 3.06 P 9.41

Gef. C 43.2 H 3.1 P 9.4

Mol.-Gew. 1025 (dampfdruckosmometr. in CHCl₃, 0.0045 m)

e) Bis(diphenylselenothiophosphinato)-cadmium(II) (5): Wie bei b) entsteht mit 0.3 g (1.115 mMol) $CdCl_2 \cdot H_2O$ ein farbloser Niederschlag, der abgesaugt und mit Wasser, Äthanol, Chloroform und Äther gründlich gewaschen und 24 Stdn. i. Vak. über P₄O₁₀ getrocknet wird. Ausb. 80%.

CdC₂₄H₂₀P₂Se₂S₂ (704.8) Ber. C 40.90 H 2.86 P 8.79 Gef. C 40.8 H 2.7 P 9.1

Die farblose Substanz ist in organischen Lösungsmitteln nicht merklich löslich.

f) Bis(diphenylselenothiophosphinato)-blei(II) (6): Mit 0.3 g $(1 \text{ mMol}) Pb(NO_3)_2$ erhält man wie bei b) in 80 proz. Ausb. hellgelbes 6.

 $PbC_{24}H_{20}P_2Se_2S_2$ (799.6) Ber. C 36.05 H 2.52 P 7.75 Gef. C 36.2 H 2.5 P 7.2 Die Substanz ist in keinem organ. Lösungsmittel merklich löslich.

g) Tris(diphenylselenothiophosphinato)-antimon(III) (7): Analog b) erhält man mit 0.3 g (1.3 mMol) SbCl₃ einen gelben Niederschlag von 7. Ausb. 70%.

 $SbC_{36}H_{30}P_3Se_3S_3\ (1010.3)$ Ber. C 42.80 H 2.99

Gef. C 42.9 H 3.0

Mol.-Gew. 1005 (dampfdruckosmometr. in CHCl₃, 0.006 m)

Die Substanz ist unter Farberhaltung in Chloroform und Benzol löslich.

h) Tris(diphenylselenothiophosphinato)-chrom(III) (8): Unter Erwärmen und Rühren werden 2.5 g (1 mMol) $[(Cr(H_2O)_4Cl_2)Cl_2 \cdot 2H_2O$ in 20 ccm Äthanol gelöst und eine äthanol. Lösung von 0.7 g 1 zugefügt. Der grüne Niederschlag wird wie unter b) aufgearbeitet. Ausb. 60%.

CrC₃₆H₃₀P₃Se₃S₃ (940.6) Ber. C 45.97 H 3.20 P 9.87 Gef. C 45.6 H 3.3 P 9.6 Mol. Gew. 990 (dampfdruck

Mol.-Gew. 990 (dampfdruckosmometr. in CHCl₃, 0.0066 m)

Die Substanz ist unter Farberhaltung in Benzol und Chloroform löslich.

[27/72]